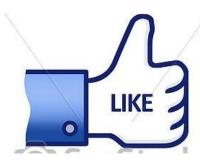

Técnicas de manejo para preparo de touros para comercialização e readaptação a sistemas de reprodução

Rodrigo da Costa Gomes Pesquisador A – Nutrição Animal Embrapa Gado de Corte

30º Curso de Melhoramento de Gado de Corte - Geneplus Embrapa
19/07/2018
Campo Grande, MS

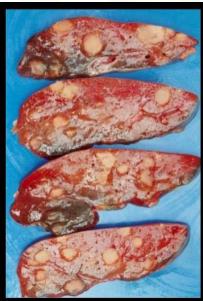


Planos nutricionais para preparação de touros - importância

Idade	Peso	Sistema	Custo (\$)
32	665	Pasto	1.205,89
32	665	Pasto+confinamento	1.476,70
24	575	Pasto	919,88
24	575	Pasto+confinamento	1.237,94
15	545	Confinamento	2.526,90
		Variação	42%

Saúde

Principais agentes isolados de abscessos hepáticos em bovinos:

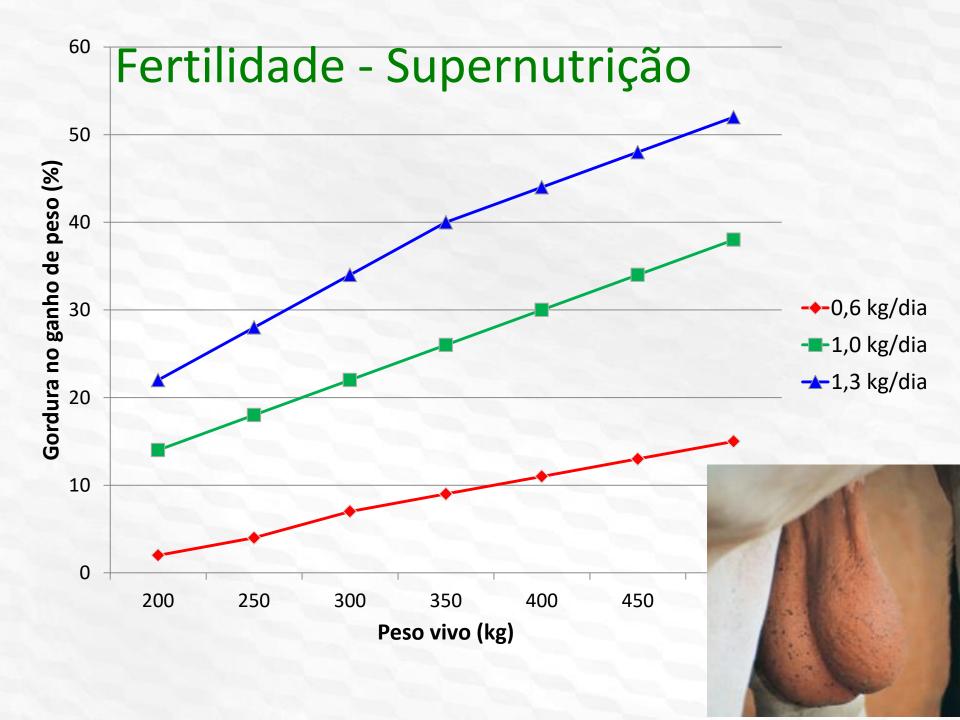

Fusobacterium necrophorum

Arcanobacterium pyogenes

Escherichia coli

Streptococcus spp

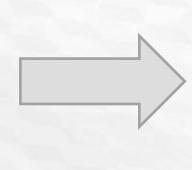
Pasteurella spp



Fertilidade - Subnutrição

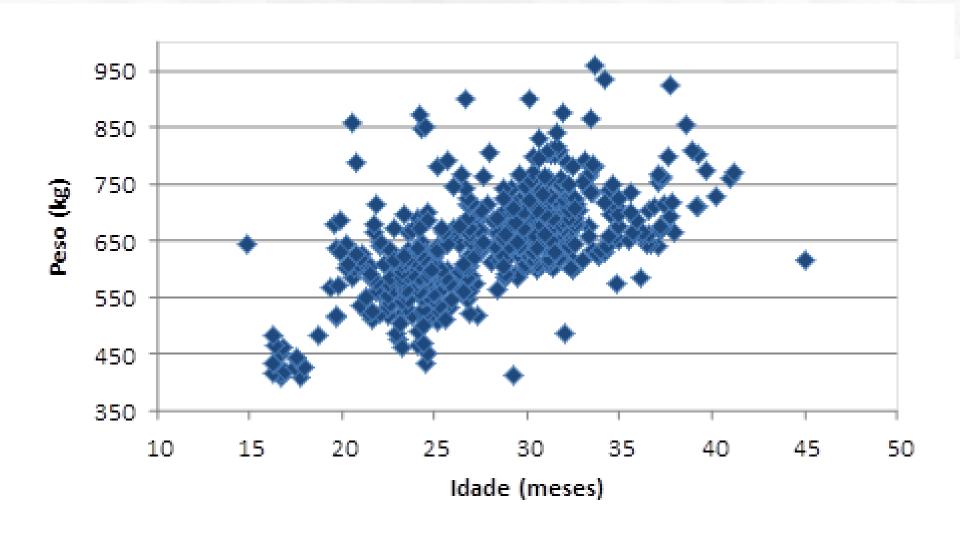
Consequência

- Desenvolvimento inferior
- Atraso na puberdade
- Hipertrofia testicular, adrenal e hipofisária
- Diminuição do volume ejaculado e libido
- Diminuição da concentração espermática (15%)
- Diminuição de motilidade e espermatozoides vivos
- Aumento de patologias

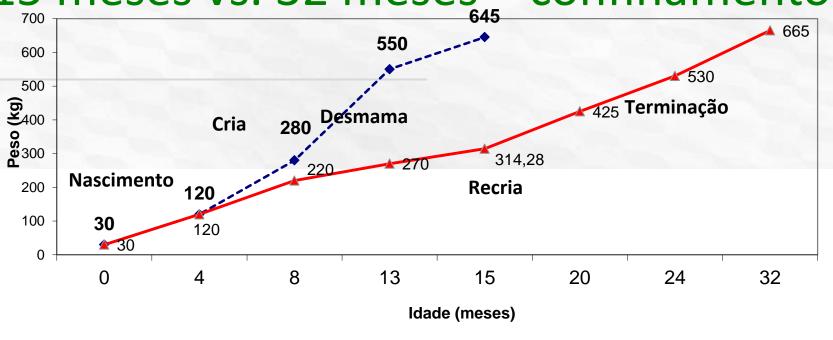


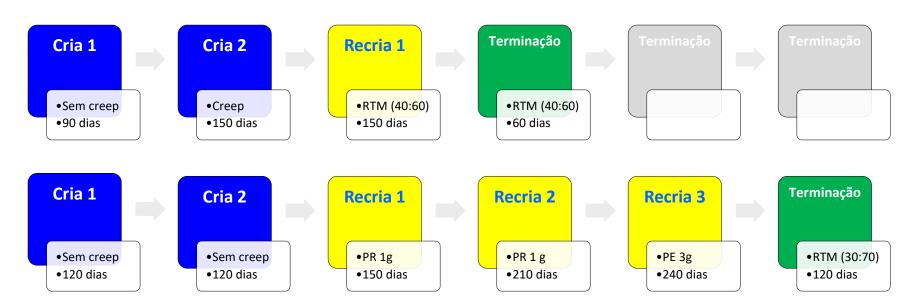
Coulter et al., 1987: tourinhos Angus e Hereford, confinados dos 7 aos 15 meses

Itom	Dieta		
Item	80% grãos	100% forragem	
Peso vivo, kg	482a	428b	
Espessura gordura subcutânea, mm	5,80a	1,55b	
PE, cm	35,1	34,9	
Produção espermática, x 10 ⁹	6,20a	8,04b	
Reserva espermática, x 10 ⁹	9,1b	13,8a	

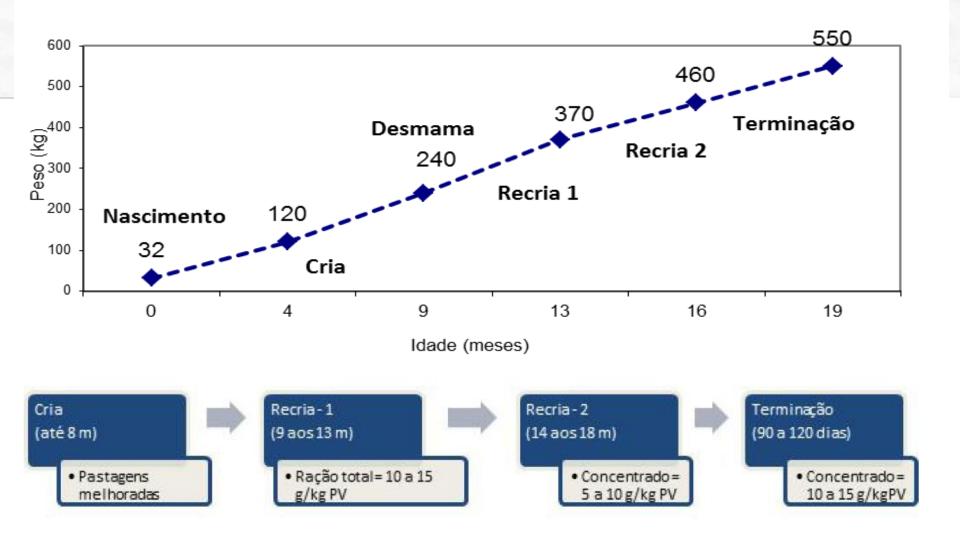


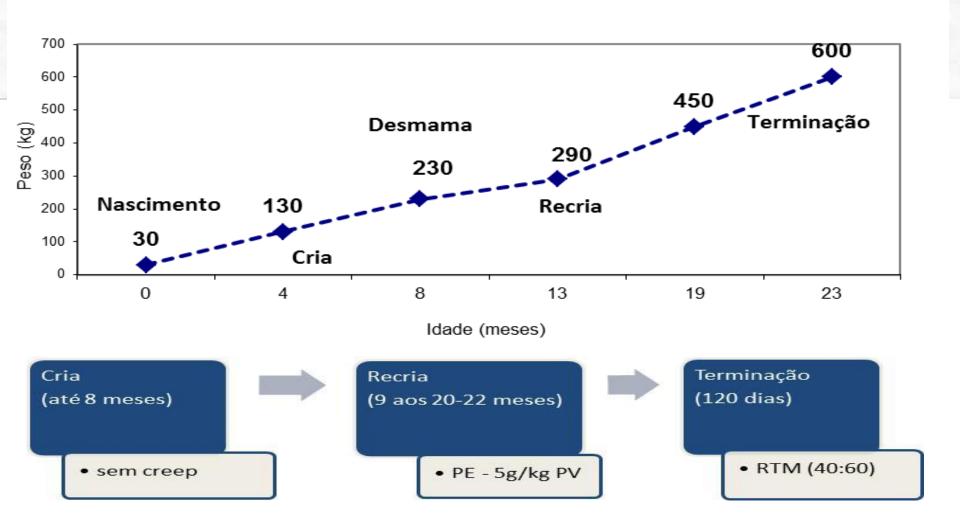
Planos nutricionais para preparação de touros - definição


A intensidade depende da meta

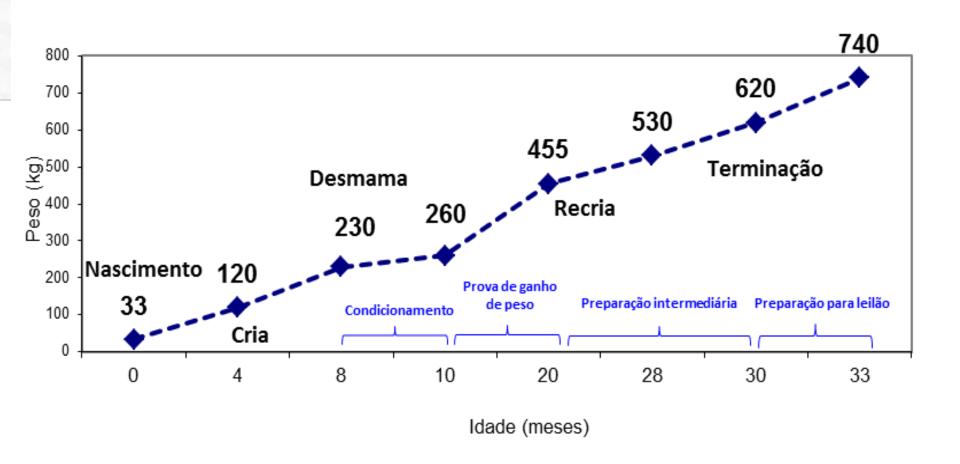


Criatório	Leilão	Peso (kg)	Idade (meses)	Ganho de peso (kg/dia)
1	A	645	15	1,371
1	А	645	20	1,007
2	В	645	31	0,662
1	Α	645	33	0,624
3	С	645	37	0,557


15 meses vs. 32 meses – confinamento



Exemplo: Preparo intensivo a pasto



Exemplo: Plano Embrapa Gado de Corte

Exemplo: Plano Fazenda Mundo Novo

Exemplo: Plano Fazenda Mundo Novo

Planos nutricionais para preparação de touros – Recomendações e cuidados

Como aumentar fertilidade

Nutrientes importantes/benéficos

- Proteína (Meacham et al., 1964)
- Ômega-3 (Gholami et al., 2010)
- Vitamina A (Hodgson et al., 1946)
- Vitamina E (Cooper et al., 1987)
- Cu, Se e Ca
- Zn (60 mg/kg Fernandes et al., 2009)

Como aumentar fertilidade

Não utilizar caroço e farelo de algodão

- Diminuição na motilidade
- Diminuição na concentração espermática
- Aumentos dos defeitos espermáticos
- Modificações histológicas
- NÃO HÁ NÍVEIS SEGUROS

Foto: Divulgação

REM Espião 007 foi usado na estação de monta logo após sair do pé da sua mãe (desmame), já foi contratado pela Alta Genétics, teve sêmen congelado e usado na fazenda aos 14 meses e deixou 50 prenhezes na propriedade.

Nutrição na fase pré-desmama

Determinante para precocidade na produção de sêmen

- 0 a 6 meses é mais importante
- Maior produção de gonadotrofinas e testosteronas
- Maior circunferência escrotal
- Maior produção de espermatozoides
- Não reverte restrição nutricional

Como reduzir problemas de cascos

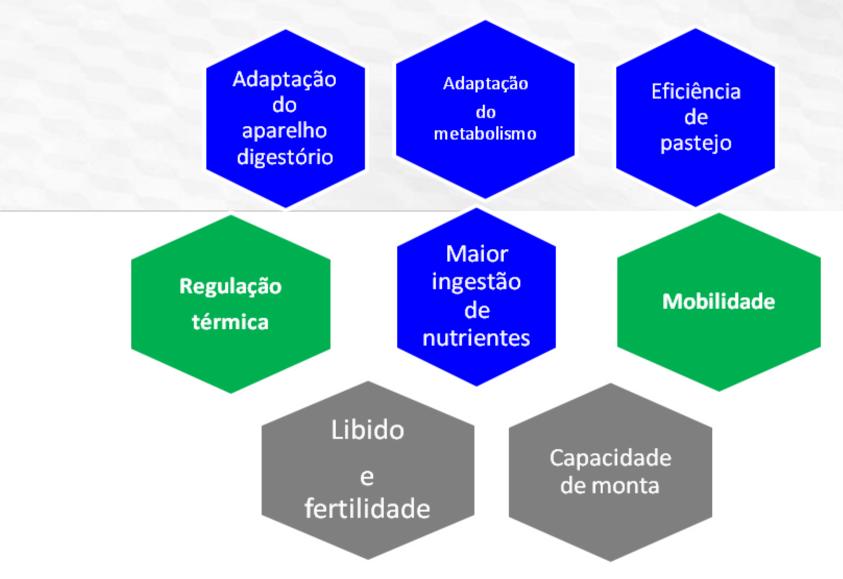
Nível	Origem					
Mivei	Nutricional		Ambienta		al	Genético
1	Excesso de carboidratos rapidamente degradados	Deficiência proteica, mineral e vitamínica	Contato com umidade excessiva	Estresse	Pedras, tocos, terreno acidentado	Problemas de aprumo
2	Acidose	Enfraquecimento		Fissuras, rachaduras, descolamentos desgastes	Desproporção tronco / membros e entre trem posterior / anterior	
3	Afecções dos cascos (laminite, dermatites, abcessos, úlceras, hiperplasia etc.)					

Como reduzir problemas de cascos

Manejo

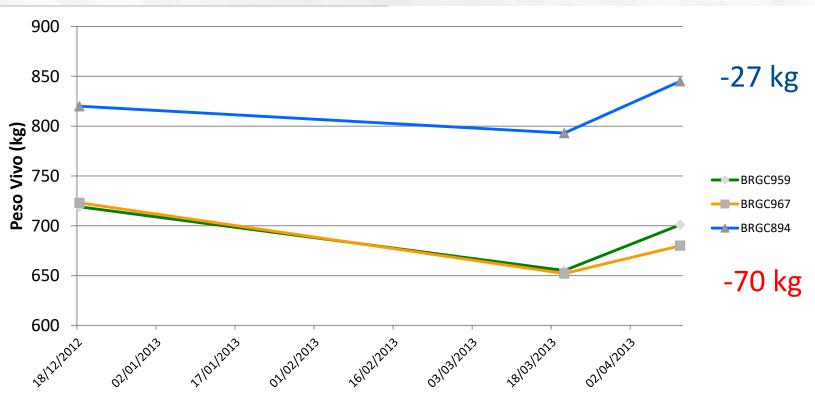
- Controlar sodomia
 - Dividir lotes homogêneos
 - Lotes menores
 - Homeopatia?
- Evitar solos mal drenados, pedras etc.
- Evitar terrenos acidentados

Como reduzir problemas de cascos


Nutrição

- Biotina: síntese de queratina e cimento intercelular (20 mg/d, 6 meses)
- Vitamina A
- Minerais (Zn, Cu, Se)
 - Balanço Zn:Cu 3:1
 - competição com Fe (máximo 2:1), Mn e Mb;
 - Minerais orgânicos ou maior []
- Moderação no uso de concentrados/Adaptação

Adaptação aos sistemas produtivos



Eficiência reprodutiva

Readaptação aos sistemas de reprodução

Relação Touro: vaca

Readaptação aos sistemas de reprodução

Tratamento prévio e idade • Recomendação geral = aclimatação 60 dias

Período (relativo à chegada do touro na propriedade)	Quantidade de concentrado (kg/ cabeça/dia)
Tratamento prévio	10
Semana 1 (70% do tratamento anterior)	7,0
Semana 2 (-20%)	5,6
Semana 3 (-20%)	4,5
Semana 4 (-20%)	3,6
Semana 5 (-20%)	2,9
Semana 6 (-20%)	2,3

Tratamento prévio	ldade	Protocolo de adaptação		
Baixo a	~36 m	- Tempo total: 2 meses - Pasto bom = proteico a 1 g/kg PV - Pasto razoável = proteico-energético a 5 g/kg PV		
moderado	~24 m	 - Tempo total: 2 meses - Pasto bom = proteico-energético a 3 g/kg PV - Pasto razoável = proteico-energético a 5 g/kg PV 		
Superali- mentado	~24 m	- Tempo total: 5 meses - Fase 1: Adaptação (Tabela 4) em pasto bom - Fase 2: Pasto bom + proteico-energético a 3 g/kg PV por 3 a 4 meses até a monta		
	~18 m	- Tempo total: 6 a 7 meses - Fase 1: utilizar o mesmo plano nutricional da origem do touro por 2 meses. - Fase 2: alternativas abaixo por 3 meses: Alternativa 1: Pasto bom + concentrado a 10 g/kg PV Alternativa 2: Pasto bom + meia dieta a 15 g/kg PV - Fase 3: Adaptação conforme Tabela 4		

DOCUMENTOS 253

Procedimentos para preparo de touros para comercialização e adaptação aos sistemas produtivos

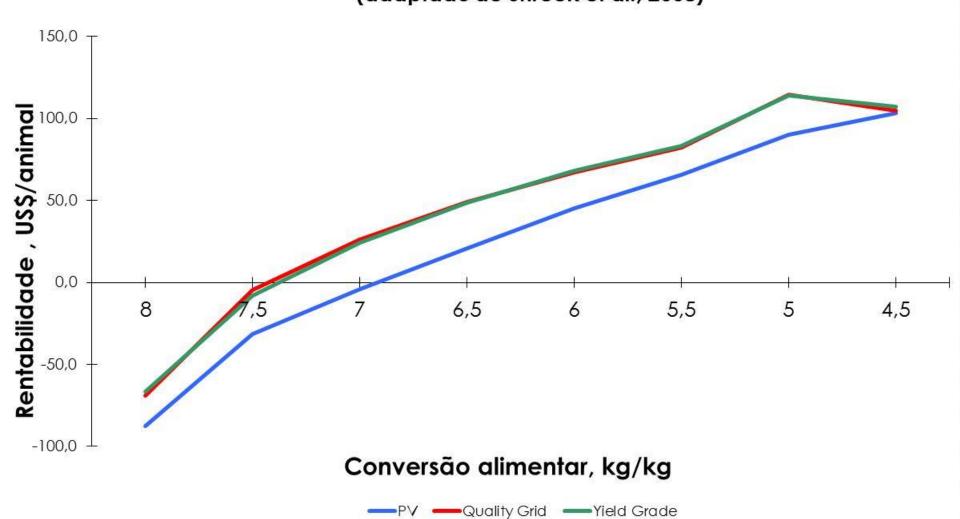
Melhoramento genético de bovinos para eficiência alimentar

Rodrigo da Costa Gomes

Pesquisador A – Nutrição Animal Embrapa Gado de Corte Campo Grande, MS

30º Curso de Melhoramento de Gado de Corte - Geneplus – Embrapa 19/07/2018 Campo Grande, MS

Eficiência Produtiva O que é EFICIÊNCIA??


- 1. Menos recursos → produção igual
- 2. Mesmos recursos → produção maior
- 3. Mais recursos → maior produção proporcionalmente

Contexto

Nível alimentar	R\$/ton MS ingerida
	83,00
	301,00
	540,00

Rentabilidade vs Eficiência alimentar (adaptado de Shreck et al., 2008)

Causas de melhor eficiência

- 个Digestibilidade dos alimentos
- ↓Susceptibilidade ao estresse
- ↓ Perdas por gases (metano)
- → Renovação muscular
- ↓ Exigência de manutenção
- ↓ Atividade
- ↓ Perda de calor
- Vísceras menores
- → Deposição de gordura

Search:		

Marketplace

Seedstock

Commercial

ial Juniors

Event Central

Education Center

Media Center

EPD Search

Records/TPR

Contact Us

Links

Records/TPR

Service/Fees

Animal Reg

Whole Herd TPR

Trends, Trait Leaders & Distributions

Genetic Abnormalities

Recognition Programs

Herd Mgt Software

Dry Matter Intake EPDs

Feed intake records from American Hereford Association research projects and breeder data collection have been analyzed in a genetic evaluation to predict Dry Matter Intake (DMI) EPDs. Reported in pounds of feed consumed per day, this EPD characterizes genetics for intake, with a lower numeric value being associated with less feed consumed on a dry matter basis.

Highlights

The DMI EPDs are generated from a multi-trait animal model genetic evaluation for 15,027 animals. Traits represented in addition to edited 3,022 individual standardized feed intake records include contemporary weaning and yearling growth measures. Weaning weights are included for weaning contemporaries to the intake calves to account for selection bias. Feed intake heritability is .40, indicating that senatic color in the trait can be effective.

Latest News

AHA Announces 2015 Dams, Sires of Distinction
For 2015, 2,385 Hereford cows from 646 Hereford
performance herds in 40 different states earned the honor of
being named a Dam of Distinction by the AHA.

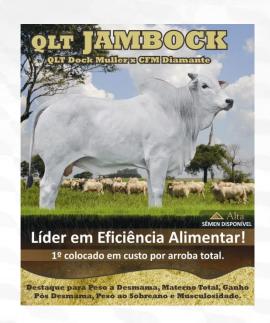
Feed Intake

Feed consumption has long been recognized as one of the most important factors in determining profitability of beef cattle production. The American Angus Association provides residual average daily gain (RADG) EPDs and dollar value indexes (\$Values) like \$F and \$B on a weekly basis as genetic selection tools to better characterize postweaning efficiency.

The feed intake data used as part of the National Cattle Evaluation (NCE) includes feed intake results from cooperating breeders, bull test facilities and multiyear research projects funded by the American Angus Association and the Angus Foundation.

The evaluation procedures for conducting a genetic evaluation of feed intake were developed using these data in conjunction with other traits already analyzed in the Angus evaluation

Iniciativas brasileiras



Prova de Avaliação de Desempenho da Raça Nelore- PADN

- Todos animais na mesma dieta
 - Silagem (40%) + concentrado (60%)
- 14 dias de adaptação
- 56 dias de medidas de consumo e peso
 - Consumo = kg/dia
 - Ganho de peso = kg/dia

Dados de consumo e peso concomitantes

FAZENDA: FAZENDA SEDE GADO CORTE - LOTE: LOTE 1
PERÍODO: 01/06/2016 00:00:00 - 30/06/2016 23:59:59

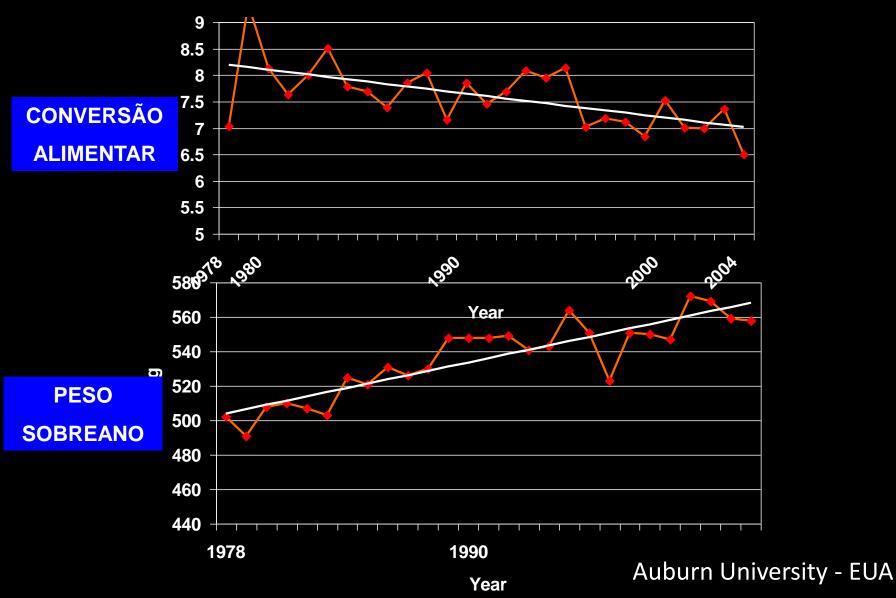
DISPOSITIVO: ALIMENTADOR DIETA TOTAL - PARÂMETRO: CONSUMO

MANEJO	01/06/2016	02/06/2016	03/06/2016	04/06/2016	05/06/2016	06/06/2016	07/06/2016	08/06/2016	09
AIB6296	25,975	24,275	22,125	23,475	23,775	27,600	23,125	24,225	
AIB6032	22,725	23,000	26,925	19,450	28,600	22,975	29,775	19,900	
JOILA0273	17,600	20,550	19,975	25,150	15,925	26,600	22,125	23,750	
AIB6112	22,400	25,850	26,050	21,325	22,150	28,050	23,050	28,625	
AIB6440	24,850	23,675	26,925	23,500	24,325	26,650	24,475	20,050	
AIB6214	-	-	24,400	27,300	27,450	25,525	27,800	30,600	
AIB6187	33,675	28,050	30,525	29,025	28,550	27,700	28,725	23,000	
ELGE3399	27,075	25,250	22,425	25,525	26,975	33,025	26,400	20,800	

Dia

Highcharts.com

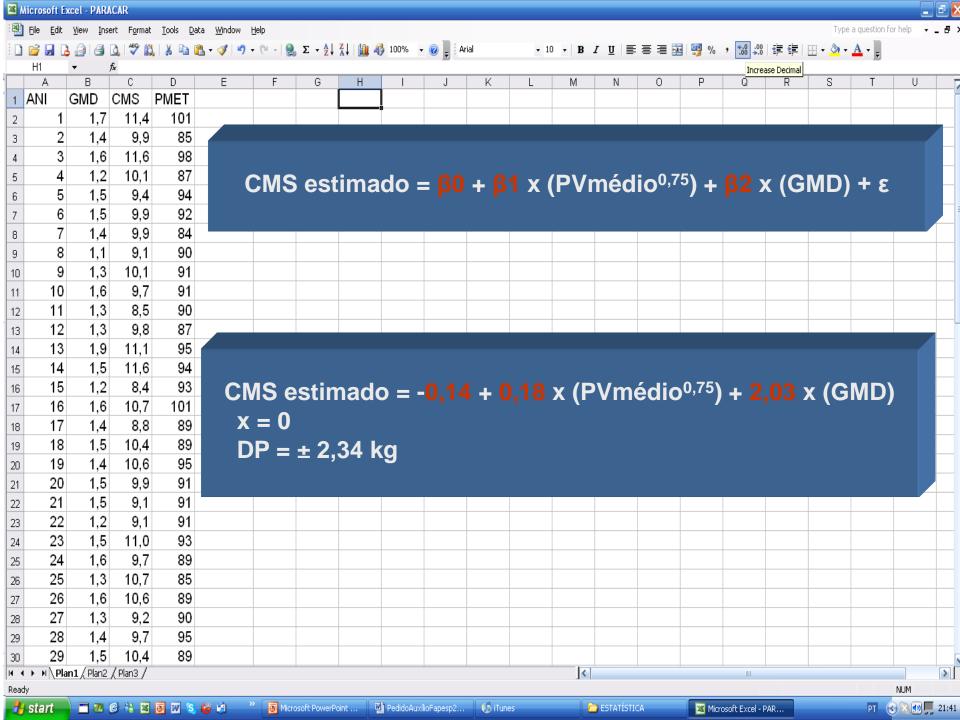
DIA	TAG	MANEJO	HORÁRIO	EQUIPAMENTO	PESO(Kg)
16/05/2016	982000401501433	BRGC1332	08:44	1110	504,000
16/05/2016	982000401501433	BRGC1332	15:23	1110	503,000
17/05/2016	982000401501433	BRGC1332	07:57	1109	491,000
17/05/2016	982000401501433	BRGC1332	08:08	1109	287,500


Conversão Alimentar

Conv Alim = Consumo de Alimento
Ganho de Peso

 Seleção para conversão alimentar leva a aumento no PESO ADULTO

SELEÇÃO PARA

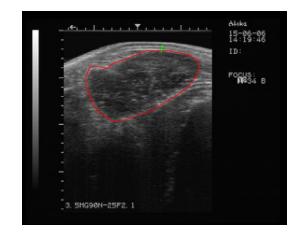

CONVERSÃO ALIMENTAR - ANGUS

CAR: O que é?

- Medida mais aceita atualmente para representar a eficiência alimentar
- Intensamente estudada nos últimos 15 anos

"Diferença entre o consumo observado (real) e o consumo esperado com base no peso vivo e ganho de peso seu e de seus contemporâneos"

CAR: Como interpretar?


Animal	CMS real	CMS esperado	CAR	Eficiência
1245	10,3	9,2	+1,1	Menor
1133	9,9	10,8	-0,9	Maior

- CAR negativo = animais mais eficientes
 - precisam de menos alimento que o esperado.
- CAR positivo = animais menos eficientes
 - precisam de mais alimento que o esperado.

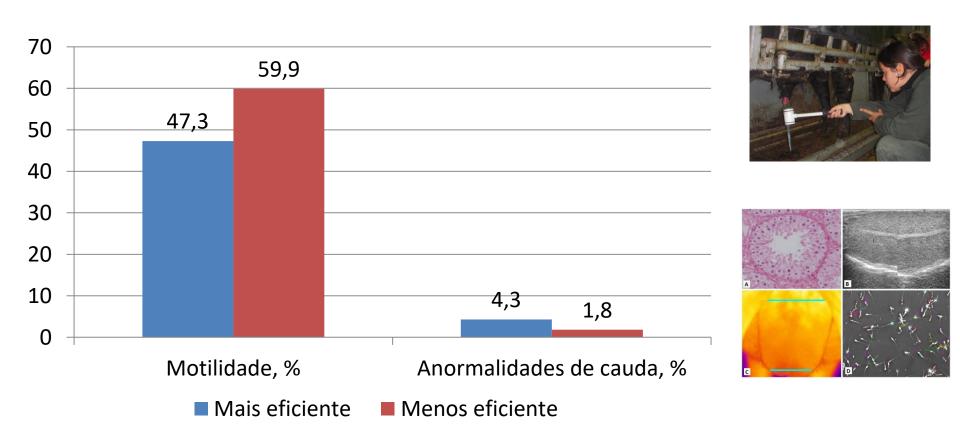
Eficiência x Gordura de acabamento

SELEÇÃO ASSISTIDA POR ULTRASSONOGRAFIA IN VIVO

6,0 5,0 4,0 3,0

2,0

7,0


1,0

0,0

Gomes et al. (2008)

Eficiência x Fertilidade

CAR = correlações genéticas

Item	GMD	PV	CMS	CA
rg	-0,04	-0,06	0,69	0,66

CAR = correlações genéticas

Item	CE	AOL	EGS	EGP
rg	-0,03	0,09	0,17	0,06

TABELA 1. Estimativas de herdabilidade para consumo alimentar residual em bovinos

Número Animais	Herdabilidade	Referência
1324	0,28 ± 0,11	Koch et al. (1963)
534	0.14 ± 0.12	Fan et al. (1995)
966	0.44 ± 0.07	Arthur et al. (1997)
1116	0.46 ± 0.07	Archer et al. (1998)
1629	0,21 a 0,39	Renand et al. (1998)
540	0.16 ± 0.08	Herd & Bishop (2000)
282	0,29	Liu et al. (2000)
1180	0.39 ± 0.03	Arthur et al. (2001b)
1302	0.43 ± 0.06	Arthur et al. (2001c)

Obrigado

rodrigo.gomes@embrapa.br