

Genome-wide selection in plant breeding for abiotic stress conditions

Roberto Fritsche-Neto

rfritscheneto@gmail.com

Campo Grande, June 19, 2013

Introduction

- **Objective:** select the most productive genotypes
- Qualitative traits few genes, with high effect each one, low environmental effect and high h²
- Quantitative traits many genes, small effect each one, with high environmental effect and low h²
- How to select for these traits?
- 1. "Traditional" Breeding
- 2. Molecular Markers associated with quantitative trait loci (*QTL*)
- Marker Assisted Selection (major QTL or QTL of high effect)
- Genome-wide Selection (many QTL of small effects)

Selection under abiotic stress conditions

- **Duration:** sufficient to stress coincides with the critical stages of plant
- **Intensity:** severe enough to affect the important characters, but allow identify variability
- Management: uniform in time and space accuracy

Early selection

Objective Reduce the interval between generations Use characters of easier and cheaper evaluation Select before flowering

How can the GWS help?

Problems in abiotic stress Negative correlations

Phenological stage – genes differentially expressed *Exemple: nutrients efficient absorption vs utilization*

Genomic Recurrent Selection

Genome-wide selection

- Simultaneous prediction (no significance tests) of the genetic effects of large numbers of markers
- Dispersed in wide genome
- Capture the effects of all loci (small and large)
- Explain much of the genetic variation of a character
- Keeps the "black box" about the genetic control
- Lower computational requirements
- Easy statistically
- Minor "aversion" by breeders

General procedures of GWS

RR-BLUP

Assumes equal variances among markers (VG / Nm) The characters differ in the number and the markers that maximize accuracy of prediction Jacknife method Number of markers Balance Nm/Ne

Balance of Nm/Ne

Subgroups of markers formed according to their effects (module)

Trait Esti	imative	Number of markers considered in the GWS								
		214	150	100	50	25	10	5	2	1
	r _{yŷ}	0,43	0,47	0,47	0,50	0,42	0,44	0,09	0,20	-0,08
PUtE (LP)	r _{gĝ}	0,79	0,87	0,88	0,93	0,78	0,82	0,16	0,38	-0,15
	r fen	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20
	%Vg	0,63	0,75	0,77	0,87	0,60	0,67	0,03	0,14	0,02

 r_{gg} – accuracy of GWS

 r_{fen} - accuracy of Phenotypic Selection

%Vg – percentage of genetic variance explained

Important aspects

- What kind of marker? SNP, GBS, ...
- Lines vs single-crosses
- Should we phenotyping where, how and what plant stage?
- If I have more than one trait of interest, how should I do?
- Statistical method
- How many markers and individuals?
- Number of genes, Ne, inbreeding, LD, Balance Nm/Ne
- How many cycles of GWS can we do?
- And about GxE, dominance and epistasis?
- Recurrent Selection or Reciprocal Recurrent Selection?
- Doubled haploids and Next-generation phenotyping

GWS and breeding programs

• GWS modifies significantly the way to select

- Reducing the time to develop cultivars
- Increasing the effective size and selection intensity
- Increasing the genetic gain per unit time

Thank you